descargar Covariances in Computer Vision and Machine Learning en PDF
Hà Quang Minh
Descripción
Sinopsis
Covariance matrices play important roles in many areas of mathematics, statistics, and machine learning, as well as their applications. In computer vision and image processing, they give rise to a powerful data representation, namely the covariance descriptor, with numerous practical applications.In this book, we begin by presenting an overview of the it finitedimensional covariance matrix representation approach of images, along with its statistical interpretation. In particular, we discuss the various distances and divergences that arise from the intrinsic geometrical structures of the set of Symmetric Positive Definite (SPD) matrices, namely Riemannian manifold and convex cone structures. Computationally, we focus on kernel methods on covariance matrices, especially using the LogEuclidean distance.We then show some of the latest developments in the generalization of the finitedimensional covariance matrix representation to the it infinitedimensional covariance operator representation via positive definite kernels. We present the generalization of the affineinvariant Riemannian metric and the LogHilbertSchmidt metric, which generalizes the Log Euclidean distance. Computationally, we focus on kernel methods on covariance operators, especially using the LogHilbertSchmidt distance. Specifically, we present a twolayer kernel machine, using the LogHilbertSchmidt distance and its finitedimensional approximation, which reduces the computational complexity of the exact formulation while largely preserving its capability. Theoretical analysis shows that, mathematically, the approximate LogHilbertSchmidt distance should be preferred over the approximate LogHilbertSchmidt inner product and, computationally, it should be preferred over the approximate affineinvariant Riemannian distance.Numerical experiments on image classification demonstrate significant improvements of the infinitedimensional formulation over the finitedimensional counterpart. Given the numerous applications of covariance matrices in many areas of mathematics, statistics, and machine learning, just to name a few, we expect that the infinitedimensional covariance operator formulation presented here will have many more applications beyond those in computer vision.
Acerca de Hà Quang Minh
Hà Quang Minh received his Ph.D. in mathematics from Brown University, Providence, RI, in May 2006, under the supervision of Steve Smale. He is currently a Researcher in the Department of Pattern Analysis and Computer Vision (PAVIS) with the Istituto Italiano di Tecnologia (IIT), Genova, Italy. Prior to joining IIT, he held research positions at the University of Chicago, the University of Vienna, Austria, and Humboldt University of Berlin, Germany. He was also a Junior Research Fellow at the Erwin Schrodinger International Institute for Mathematical Physics in Vienna and a Fellow at the Institute for Pure and Applied Mathematics (IPAM) at the University of California, Los Angeles (UCLA). His current research interests include applied and computational functional analysis, applied and computational differential geometry, machine learning, computer vision, and image and signal processing. His recent research contributions include the infinitedimensional LogHilbertSchmidt metric and LogDeterminant divergences between positive definite operators, along with their applications in machine learning and computer vision in the setting of kernel methods. He received the Microsoft Best Paper Award at the Conference on Uncertainty in Artificial Intelligence (UAI) in 2013 and the IBM Pat Goldberg Memorial Best Paper Award in Computer Science, Electrical Engineering, and Mathematics in 2013.
Acerca de Vittorio Murino
Vittorio Murino is a full professor and head of the Pattern Analysis and Computer Vision (PAVIS) department at the Istituto Italiano di Tecnologia (IIT), Genoa, Italy. He received his Ph.D. in electronic engineering and computer science in 1993 at the University of Genoa, Italy. Then, he was first at the University of Udine and, since 1998, at the University of Verona where he was chairman of the Department of Computer Science from 2001 to 2007. Since 2009, he is leading the PAVIS department in IIT, which is involved in computer vision, pattern recognition and machine learning activities. His specific research interests are focused on statistical and probabilistic techniques for image and video processing, with application on (human) behavior analysis and related applications, such as video surveillance, biomedical imaging, and bioinformatics. Prof. Murino is coauthor of more than 400 papers published in refereed journals and international conferences, member of the technical committees of important conference (CVPR, ICCV, ECCV, ICPR, ICIP, etc.), and guest coeditor of special issues in relevant scientific journals. He is currently a member of the editorial board of Computer Vision and Image Understanding, Pattern Analysis and Applications, and Machine Vision & Applications journals. Finally, he is a Senior Member of the IEEE and Fellow of the IAPR.
ISBN: 9781681730141
Idioma: Español
Formatos: pdf epub kindle mobi
$3324.00
>>> Aquí GRATIS!!! <<<
Información:
 Veces descargado: 824
 Tamaño: 979KB
 Veces leído: 1803
Aquí tienes más Libros de Informática
Llegaste buscando:
Covariances in Computer Vision and Machine Learning descargar epub, Covariances in Computer Vision and Machine Learning gratis sin registrarse, Covariances in Computer Vision and Machine Learning en pdf en español
¿Cómo descargar este y todos los libros del sitio?

📕Registrate gratis AQUÍ por 1 mes

📕Antes que termine el mes, CANCELA la membresia

📕Disfruta de todos los libros y contenidos que necesites