## descargar Numerical Integration of Space Fractional Partial Differential Equations en PDF

William E. Schiesser

** **

**Descripción**

Sinopsis

Partial differential equations (PDEs) are one of the most used widely forms of mathematics in science and engineering. PDEs can have partial derivatives with respect to (1) an initial value variable, typically time, and (2) boundary value variables, typically spatial variables. Therefore, two fractional PDEs can be considered, (1) fractional in time (TFPDEs), and (2) fractional in space (SFPDEs). The two volumes are directed to the development and use of SFPDEs, with the discussion divided as: Vol 1: Introduction to Algorithms and Computer Coding in R Vol 2: Applications from Classical Integer PDEs. Various definitions of space fractional derivatives have been proposed. We focus on the Caputo derivative, with occasional reference to the Riemann-Liouville derivative. Partial differential equations (PDEs) are one of the most used widely forms of mathematics in science and engineering. PDEs can have partial derivatives with respect to (1) an initial value variable, typically time, and (2) boundary value variables, typically spatial variables. Therefore, two fractional PDEs can be considered, (1) fractional in time (TFPDEs), and (2) fractional in space (SFPDEs). The two volumes are directed to the development and use of SFPDEs, with the discussion divided as: Vol 1: Introduction to Algorithms and Computer Coding in R Vol 2: Applications from Classical Integer PDEs. Various definitions of space fractional derivatives have been proposed. We focus on the Caputo derivative, with occasional reference to the Riemann-Liouville derivative. The Caputo derivative is defined as a convolution integral. Thus, rather than being local (with a value at a particular point in space), the Caputo derivative is non-local (it is based on an integration in space), which is one of the reasons that it has properties not shared by integer derivatives. A principal objective of the two volumes is to provide the reader with a set of documented R routines that are discussed in detail, and can be downloaded and executed without having to first study the details of the relevant numerical analysis and then code a set of routines. In the first volume, the emphasis is on basic concepts of SFPDEs and the associated numerical algorithms. The presentation is not as formal mathematics, e.g., theorems and proofs. Rather, the presentation is by examples of SFPDEs, including a detailed discussion of the algorithms for computing numerical solutions to SFPDEs and a detailed explanation of the associated source code.

Acerca de William E. Schiesser

William E. Schiesser is Emeritus McCann Professor of Computational Biomedical Engineering and Chemical and Biomolecular Engineering at Lehigh University.

Acerca de Younes Salehi

My research focus is applied mathematics broadly. This includes numerical linear algebra, optimization and solving differential equations. My primary research interest concerns the areas of numerical analysis, scientific computing and high performance computing with particular emphasis on the numerical solution of ordinary differential equations (ODEs) and partial differential equations (PDEs).One focus of my work is programming efficient numerical methods for ODEs and PDEs. I have extensive experience in MATLAB, Maple, Mathematica and R programming of transportable numerical method routines, but I am also experienced in programming in C, C++ and C#, and could readily apply these programming systems to numerical ODE/PDEs.Recently, I have become interested in fractional differential equations (FDEs), especially the numerical solution of fractional initial value problems (FIVPs) and space fractional differential equations (SFPDEs).

ISBN: 9781681732084

Idioma: Español

Formatos: pdf epub kindle mobi

$3800.00

>>> Aquí GRATIS!!! <<<

### Información:

- Veces descargado:
**942** - Tamaño:
**792KB** - Veces leído:
**1216**

Aquí tienes más Libros de Informática

**Llegaste buscando:**

*Numerical Integration of Space Fractional Partial Differential Equations descargar epub, Numerical Integration of Space Fractional Partial Differential Equations gratis sin registrarse, Numerical Integration of Space Fractional Partial Differential Equations en pdf en español*

**¿CÓMO DESCARGAR ESTE LIBRO?**

**1.** 📕Registrate gratis **AQUÍ **por 1 mes

**2.** 📕Antes que termine el mes, CANCELA la membresia

**3. **📕Disfruta de todos los libros y contenidos que necesites